Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 181
Filter
1.
European Journal of Human Genetics ; 31(Supplement 1):343, 2023.
Article in English | EMBASE | ID: covidwho-20238897

ABSTRACT

Background/Objectives: Genetic variants affecting host defense against pathogens may help explain COVID-19 fatal outcomes. Our aim was to identify rare genetic variants related to COVID-19 severity in a selected group of patients under 60 years who required intubation or resulting in death. Method(s): Forty-four very severe COVID-19 patients were selected from the Spanish STOP-Coronavirus cohort, which comprises more than 3,500 COVID-19 patients. Genotype was performed by whole exome sequencing and variants were selected by using a gene panel of 867 candidate genes (immune response, primary immunodeficiencies or coagulation, among other). Variants were filtered, priorized and their potential pathogenicity was assessed following ACGM criteria. Result(s): We detected 44 different variants of interest, in 29 different patients (66%). Some of these variants were previously described as pathogenic (26%). Mostly, the candidate variants were located in genes related to immune response (38%), congenital disorders of glycosylation (14%) or damaged DNA binding genes (9%). A network analysis, showed three main components, consisting of 25 highly interconnected genes related to immune response and two additional networks enriched in carbohydrate metabolism and in DNA metabolism and repair processes. Conclusion(s): The variants identified affect different, but interrelated, functional pathways such as immune response and glycosylation. Further studies are needed for confirming the ultimate role of the new candidate genes described in the present study on COVID-19 severity.

2.
Monatsschr Kinderheilkd ; : 1-6, 2023 Jun 05.
Article in German | MEDLINE | ID: covidwho-20244351

ABSTRACT

Background: The COVID-19 pandemic posed special challenges for the existing structures for vaccination prevention in Germany with respect to 1) understanding the role and aims of those involved and the interests of the children and 2) the definition of adequate criteria and assessment of the risk of severe diseases in children. Objectives: Do the priorities of different groups of interest differ in the recommendations for COVID-19 vaccination? Which data on the pathogenicity of different variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV­2) are necessary and how did they change during the pandemic? Methods: The tasks, objectives and perception of politics and the German national vaccination advisory committee regarding vaccination of children are discussed in the face of summarized recent data on clinical manifestations of pediatric SARS-CoV­2 infections among children and adolescents in Germany, which could be estimated by combining different German data sources. Results: The perspectives of politics and children differ but are legitimate when they are clearly stated. The decisive risk for a severe course or the pediatric inflammatory multisystem syndrome temporally associated with SARS-CoV­2 (PIMS-TS) per 10,000 SARS-CoV­2 infections for the decision on vaccination from the perspective of children, decreased during the course of the pandemic with dominance of the omicron variant. Severe courses of COVID-19 still predominantly affect children with underlying diseases. The age-stratified analysis of vaccinated and nonvaccinated children showed that the alterations in the pathogenicity of the virus in the course of the pandemic is particularly reflected in the reduction in the risk of PIMS-TS. The general reduction of severe courses of COVID-19 again can be explained by the characteristics of variants of concern (VOC) as well as increasing vaccination rates and immunity following a SARS-CoV­2 infection. Conclusion: The primary goal of COVID-19 vaccination in children and adolescents is the prevention of severe courses of the disease. In pediatric risk groups the best possible immunity or immune protection by vaccination should be strived for. It is currently unclear whether catch-up vaccination in already infected or vaccinated children or whether forthcoming healthy children will need vaccination, aiming for hybrid immunity.

3.
J Virol Methods ; 318: 114755, 2023 Aug.
Article in English | MEDLINE | ID: covidwho-20240515

ABSTRACT

Porcine epidemic diarrhea virus (PEDV) is a highly contagious intestinal virus. However, the current PEDV vaccine, which is produced from classical strain G1, offers low protection against recently emerged strain G2. This study aims to develop a better vaccine strain by propagating the PS6 strain, a G2b subgroup originating from Vietnam, on Vero cells until the 100th passage. As the virus was propagated, its titer increased, and its harvest time decreased. Analysis of the nucleotide and amino acid variation of the PS6 strain showed that the P100PS6 had 11, 4, and 2 amino acid variations in the 0 domain, B domain, and ORF3 protein, respectively, compared to the P7PS6 strain. Notably, the ORF3 gene was truncated due to a 16-nucleotide deletion mutation, resulting in a stop codon. The PS6 strain's virulence was evaluated in 5-day-old piglets, with P7PS6 and P100PS6 chosen for comparison. The results showed that P100PS6-inoculated piglets exhibited mild clinical symptoms and histopathological lesions, with a 100% survival rate. In contrast, P7PS6-inoculated piglets showed rapid and typical clinical symptoms of PEDV infection, and the survival rate was 0%. Additionally, the antibodies (IgG and IgA) produced from inoculated piglets with P100PS6 bound to both the P7PS6 and P100PS6 antigens. This finding suggested that the P100PS6 strain was attenuated and could be used to develop a live-attenuated vaccine against highly pathogenic and prevalent G2b-PEDV strains.


Subject(s)
Coronavirus Infections , Porcine epidemic diarrhea virus , Swine Diseases , Chlorocebus aethiops , Swine , Animals , Vero Cells , Porcine epidemic diarrhea virus/genetics , Virulence , Serial Passage , Vaccines, Attenuated/genetics , Coronavirus Infections/epidemiology , Diarrhea/veterinary
4.
Vaccines (Basel) ; 11(5)2023 Apr 30.
Article in English | MEDLINE | ID: covidwho-20237906

ABSTRACT

Porcine epidemic diarrhea (PED) is a highly contagious disease that has been reported annually in several Asian countries, causing significant economic losses to the swine livestock industry. Although vaccines against the porcine epidemic diarrhea virus (PEDV) are available, their efficacy remains questionable due to limitations such as viral genome mutation and insufficient intestinal mucosal immunity. Therefore, the development of a safe and effective vaccine is necessary. In this study, a virulent Korean strain of PEDV, CKT-7, was isolated from a piglet with severe diarrhea, and six different conditions were employed for serial passage of the strain in a cell culture system to generate effective live attenuated vaccine (LAV) candidates. The characteristics of these strains were analyzed in vitro and in vivo, and the CKT-7 N strain was identified as the most effective vaccine candidate, with a viral titer peak of 8.67 ± 0.29 log10TCID50/mL, and no mortality or diarrhea symptoms were observed in five-day-old piglets. These results indicate that LAV candidates can be generated through serial passage with different culture conditions and provide valuable insights into the development of a highly effective LAV against PEDV.

5.
Transboundary and Emerging Diseases ; 2023, 2023.
Article in English | ProQuest Central | ID: covidwho-2325841

ABSTRACT

Bovine kobuvirus (BKV) is an infectious agent associated with neonatal calf diarrhoea (NCD), causing important economic losses to dairy and beef cattle herds worldwide. Here, we present the detection rate and characterize the genome of BKV isolated from diarrhoeic calves from a Central Italy herd. From January to December 2021, we collected blood samples and nasal and rectal swabs from 66 calves with severe NCD between 3 and 20 days of age. After virological (bovine coronavirus, bovine viral diarrhoea virus, and bovine rotavirus), bacteriological (Escherichia coli spp. and Salmonella spp.), and parasitological (Cryptosporidium spp., Eimeria spp., and Giardia duodenalis) investigations, we detected BKV using the metagenomic analysis. This result was confirmed using a specific polymerase chain reaction assay that revealed the number of BKV-positive nasal (24.2%) and rectal swabs (31.8%). The prevalence of BKV was higher than that of BCoV. Coinfection with BKV and BCoV was detected in 7.5% of the rectal swabs, highlighting the involvement of another infectious agent in NCD. Using next generation sequencing (NGS) approach, it was possible to obtain the complete sequence of the BKV genome from other two rectal swabs previously analysed by real-time PCR. This is the first report describing the whole genome sequence (WGS) of BKV from Italy. The Italian BKV genomes showed the highest nucleotide sequence identity with BKV KY407744.1, identified in Egypt in 2014. The sequence encoding VP1 best matched that of BKV KY024562, identified in Scotland in 2013. Considering the small number of BKV WGSs available in public databases, further studies are urgently required to assess the whole genome constellation of circulating BKV strains. Furthermore, pathogenicity studies should be conducted by inoculating calves with either only BKV or a combination with other enteric pathogens for understanding the probable role of BKV in NCD.

6.
Transboundary and Emerging Diseases ; 2023, 2023.
Article in English | ProQuest Central | ID: covidwho-2320875

ABSTRACT

Porcine sapelovirus (PSV) is an emerging swine enteric virus that can cause various disorders including acute diarrhea, respiratory distress, reproductive failure, and polioencephalomyelitis in pigs. In this study, we isolated a PSV strain HNHB-01 from a clinical porcine deltacoronavirus- (PDCoV-) positive intestinal content of a diarrheic piglet. PSV was first identified using the small RNA deep sequencing and assembly, and further identified by the electron microscopic observation and the immunofluorescence assay. Subsequently, this virus was serially passaged in swine testis (ST) cells, and the complete genomics of PSV HNHB-01 passage 5 (P5), P30, P60, and P100 were sequenced and analyzed. 9 nucleotide mutations and 7 amino acid changes occurred in the PSV HNHB-01 P100 strain when compared with the PSV HNHB-01 P5. Pathogenicity investigation showed that orally inoculation of PSV HNHB-01 P30 could cause obvious clinical symptoms and had broad tissue tropism in 5-day-old piglets. Epidemiological investigation revealed that PSV infections and the coinfections of diarrhea coronaviruses were highly prevalent in swine herds. The complete genomes of 8 representative PSV epidemic strains were sequenced and analyzed. Phylogenetic analysis revealed that the PSV epidemic strains were closely related to other PSV reference strains that located in the Chinese clade. Furthermore, recombination analysis revealed that the recombination events were occurred in downstream of the 2C region in our sequenced PSV HNNY-02/CHN/2018 strain. Our results provided theoretical basis for future research studies of the pathogenic mechanism, evolutionary characteristics, and the development of vaccines against PSV.

7.
Journal of Hainan Medical University ; 28(20):1-5, 2022.
Article in English | GIM | ID: covidwho-2320288

ABSTRACT

Since the outbreak of COVID-19, severe acute respiratory syndrome coronavirus 2 genome is still mutating, forming a variety of variants with strong transmission capacity, causing the spread of the epidemic worldwide, posing a serious threat to people's physical and mental health, and posing a major challenge to global public health. Omicron remains the main variant in several outbreaks worldwide, accounting for about 99% of the global genetic sequence. Recently, the World Health Organization announced that the subvariant of Omicron BA.5 has been found in more than 100 countries and regions around the world, causing the global epidemic rebound. However, there are few studies on the subvariant BA.5. This article reviews the latest research progress in epidemiology, infectivity, pathogenicity, vaccine and monoclonal antibody protection against Omicron subvariant BA.5, in order to provide reference for scientific prevention and control of Omicron subvariant BA.5.

8.
Pakistan Journal of Science ; 75(1):134, 2023.
Article in English | ProQuest Central | ID: covidwho-2317476

ABSTRACT

This review focuses on the characteristics of coronavirus disease-19 (COVID-19) including virus structure, ecoepidemiology and pathophysiology, signs and symptoms in infected people, and data on virus pathogenicity, severity, and survivability in COVID-19 infected patients. The emphasis is on immunological reactions, diagnosis, prophylactic methods, and the zoonotic significance of COVID-19. The authors feel that the review's contents will be valuable to epidemiologists, virologists, public health officials, diagnosticians, laboratory workers, environmentalists, and socioeconomic experts. It has information on the many types of coronavirus variants, the disease situation in Pakistan and the WHO criteria for COVID-19 prevention is given. Moreover, lessons learned from the COVID-19 pandemic are also outlined.

9.
Fujian Journal of Agricultural Sciences ; 37(11):1388-1393, 2022.
Article in Chinese | CAB Abstracts | ID: covidwho-2316627

ABSTRACT

Objective: Epidemiology and genetic variations of the infectious bronchitis virus(IBV) in Fujian province were studied. Method: Two strains of virus isolated from the diseased chickens in Fujian in 2021 were identified by chicken embryo pathogenicity test, electron microscope observation, and RT-PCR. S1 genes of the isolates were cloned, sequenced, and analyzed using biological software. Result: The two IBV strains were code named FJ-NP01 and FJ-FZ01. The full length of S1 of FJ-NP01 was 1 629 nt encoding 543 amino acids, and that of FJ-FZ01, 1 620 nt encoding 540 amino acids. The S1 gene cleavage site of FJ-FZ01 was HRRRR, same as all reference strains of genotype I branch;while that of FJ-NP01 HRRKR differed from the reported site of IBV isolated from genotype IV but same as that of TC07-2 reference strain of genotype VI. The homology of nucleotide and amino acid between the two isolates was 83.2% and 79.6%, respectively, but merely 75.7%-76.3%and 77.1%-83.5% with the Mass-type conventional vaccines H120 and H52, respectively. Further analysis showed that FJ-NP01was from a recombination event between CK CH GD LZ12-4 and L-1148, the homology of nucleotide acid between 1438-1506 nt of FJ-NP01 with CK CH GD LZ12-4 was 97%, and 95.9% between the other nucleotide acid of S1 gene with L-1148. Conclusion: It appeared that the IBV epidemic experienced in the province was complex in nature and that the existing Mass vaccines would not provide sufficient immune protection to deter the spread.

10.
Respirology ; 28(Supplement 2):106, 2023.
Article in English | EMBASE | ID: covidwho-2314408

ABSTRACT

Introduction/Aim: As the causative agent of COVID-19, SARS-CoV-2 remains a global cause for concern. Compared to other highly pathogenic coronaviruses (SARS-CoV and MERS-CoV), SARS-CoV-2 exhibits stronger transmissibility but less lethality, indicating that SARS-CoV-2 displays unique characteristics, despite the partial genomic proximity. Thus, we aim to employ RNA sequencing to define transcriptional differences in epithelial responses following infection with SARS-CoV-2 compared to pathogenic SARS-CoV and MERS-CoV, and low pathogenic HCoV-229E. Method(s): Primary human bronchial epithelial cells (PBEC) were differentiated for 6 weeks at the air-liquid interface (ALI) before parallel infection by the 4 different coronaviruses (n = 4). After infection following apical application of coronaviruses at low dose (MOI 0.1), cells were harvested for bulk RNA sequencing. Gene were considered significant with a fold change (FC) > 2 and false discovery rate of FDR < 0.05. Inhibitor experiments were conducted on CALU-3 cells using DIM-C-pPhOH 10 muM (NR4A1 antagonist), Sp600125 10 muM (JNK inhibitor), T-5224 10 muM (AP-1 transcription factor inhibitor) and Cytosporone B (CsB 5 muM;NR4A1 agonist) preincubated for 1 h with these compounds and subsequently infected with SARS-CoV-2 or MERS-CoV (MOI of 1). Samples were collect 24 h later for PCR. Result(s): PCR and RNA-Seq demonstrated that all tested coronaviruses efficiently infected ALI-PBEC and replicated over 72 h (p < 0.05). RNA sequencing analysis revealed that infection with SARS-CoV, MERS-CoV and HCoV-229E resulted in largely similar transcriptional responses by the epithelial cells. However, whereas infection with these viruses was accompanied by an increased expression of genes associated with JNK/AP-1 signalling, including FOS, FOSB and NR4A1 (FC > 1, FDR < 0.05), no such increase was observed following SARS-CoV-2 infection. Further, we found that an NR4A1 antagonist reduced viral replication of MERS and SARs-CoV-2 100-fold in Calu-3 cells. Conclusion(s): In conclusion, these data suggest that SARS-CoV-2-infected ALI-PBEC exhibit a unique transcriptional response compared to other coronaviruses, which might relate to the pathogenicity of the virus.

11.
Topics in Antiviral Medicine ; 31(2):36, 2023.
Article in English | EMBASE | ID: covidwho-2313985

ABSTRACT

Four broad themes run through this year's N'Galy-Mann lecture: clinical medicine, HIV, health security, and global health. Three patterns of disease characterized medicine in East Africa at the time that AIDS was first described in the United States: diseases of poverty, mainly infectious;non-communicable diseases with differing international epidemiology;and classic tropical diseases restricted in distribution by ecologic needs of parasites and vectors. Limited resources did not prevent the practice of good medicine under adverse circumstances, nor application of basic principles of research. The recognition of a second AIDS virus (HIV-2) in West Africa in the mid-late 1980s required applied research to assess implications and potential global impact of this novel infection. CDC established a second collaborative research site in sub-Saharan Africa, Projet RETRO-CI, in Abidjan, Cote d'Ivoire (the first was Projet SIDA in the Democratic Republic of Congo, where N'Galy and Mann made seminal contributions). Controversy around HIV-2 diagnosis, transmission, and pathogenicity was slowly resolved through West African research showing HIV-2 was an AIDS-causing pathogen, slower than HIV-1 in its progression, and less transmissible until late in the course of infection. Mother-to-child transmission was exceptionally rare. Claims that HIV-2 protected against HIV-1 were not substantiated. Projet RETRO-CI clarified the spectrum of HIVassociated disease and the dominant role of tuberculosis. Placebo-controlled trials demonstrated efficacy of short-course zidovudine for prevention of perinatal transmission of HIV-1, and of cotrimoxazole prophylaxis in reducing hospitalization and mortality in persons with HIV. Global health today is dominated by discourse around health security. The West African and Congolese Ebola epidemics since 2014 aroused strong declarations, yet the world was poorly prepared to address the pandemic of COVID-19. Health in the world has changed substantially since AIDS emerged. As 2030, the year for delivery on the Sustainable Development Goals, approaches, development assistance for health remains essential to address traditional, unfinished commitments yet does not match today's global burden of disease. CROI attendees are encouraged to remember colleagues lost to COVID-19 and other challenges;to assess priorities in today's global health, including relating to HIV;and to reflect on what issues? N'Galy and Mann would focus on today.

12.
Zhongguo Yufang Shouyi Xuebao / Chinese Journal of Preventive Veterinary Medicine ; 44(9):921-926, 2022.
Article in English, Chinese | CAB Abstracts | ID: covidwho-2313055

ABSTRACT

In order to perform the isolation of avian infectious bronchitis virus (IBV) and study the pathogenicity of IBV isolate, the RT-PCR was used to detect nucleic acid extracted from a clinical sample of chickens, which were suspected to be infected with infectious bronchitis virus (IBV) and provided by a farmer in Yuncheng, Shanxi province. And the sample was detected as IBV positive by RT-PCR. Then 9-11-day-old SPF chicken embryonated eggs were inoculated with the sample filtered from the grinding fluid, and the obtained allantoic fluid was blindly passed by three generations (F3) and was also tested as IBV positive;The F11 generation passaged in embryonated eggs caused typical "dwarf embryo" lesions to SPF chicken embryonated eggs, and induced the loss of cilia in tracheal rings. The results showed that an IBV strain was isolated and named as YC181031. The S1 gene amplification and sequencing analysis showed that YC181031 strain belonged to IBV GI-22 genotype, which is also nephropathogenic type IBV. Seven-day-old SPF chicks were used to test the pathogenicity of the isolate. The results showed that several clinical symptoms were showed in chicks infected with YC181031, such as breathing with difficulty, depression, excreting watery droppings and death. The mortality of infected chicks was 20%. Typical pathological changes such as enlargement of kidney and urate deposition in the kidney were observed in infected chicks. The immunohistochemical assay and viral load detection were performed for the tissue samples from infected and dead chicks. The tissue lesions and distribution of virus were observed in the kidney, trachea, lung, glandular stomach, spleen and liver samples of infected chicks. RT-PCR detection of pharyngeal anal swabs showed that the virus shedding by infected chicks could be continuously detected within 14 days of the test period;The viral loads of various tissues were detected by RT-qPCR and the results showed that the viral load from high to low was kidney, trachea, lung, stomach, spleen and liver. The viral load of kidney was significantly higher than that of other tissues (P < 0.05).In this study, the pathogenicity characteristics of GI-22 genotype strain were systematically studied for the first time, providing a reference for the prevention and treatment of the disease.

13.
Poult Sci ; 102(5): 102612, 2023 May.
Article in English | MEDLINE | ID: covidwho-2317557

ABSTRACT

Infectious bronchitis, an acute and highly contagious disease that affects chickens, is caused by the infectious bronchitis virus (IBV). The antigenic variant QX-like IBV was first reported in China in 1996 and is now endemic in many countries. Our previous study reported the first detection and isolation of QX-like IBVs in Japan and that they were genetically related to the recently detected strains in China and South Korea. The pathogenicity of 2 Japanese QX-like IBV strains (JP/ZK-B7/2020 and JP/ZK-B22/2020) was evaluated by inoculating specific pathogen-free (SPF) chickens with 102 to 106 median embryo infectious dose. Both strains caused clinical signs of respiratory symptoms, gross tracheal lesions, and moderate-to-severe suppression of tracheal ciliostasis. To evaluate the efficacy of commercial IBV live vaccines against the JP/ZK-B7/2020 strain, vaccinated SPF chickens were challenged with the JP/ZK-B7/2020 strain at 104 EID50 (median embryo infectious dose). Only the JP-Ⅲ vaccine provided high levels of protection (reduced suppression of tracheal ciliostasis and reduced viral loads in organs), whereas the Mass vaccine showed little protective effect. Virus neutralization test results and comparisons between IBV genotypes based on the S1 gene suggested that QX-like and JP-III genotypes were closely related. These results suggest that the JP-III IBV vaccine, which has relatively high S1 gene homology with QX-like IBVs, is effective against Japanese QX-like IBV strain.


Subject(s)
Coronavirus Infections , Infectious bronchitis virus , Poultry Diseases , Viral Vaccines , Animals , Chickens , Japan , Coronavirus Infections/prevention & control , Coronavirus Infections/veterinary , Vaccines, Attenuated
14.
J Infect Dis ; 2022 Jul 01.
Article in English | MEDLINE | ID: covidwho-2319602

ABSTRACT

BACKGROUND: The epidemiological advantage of Omicron variant is evidenced by its rapid spread and the ability to outcompete prior variants. Among Omicron sub-lineages, early outbreaks were dominated by BA.1 while BA.2 has gained dominance since February 2022. The relative pathogenicity and transmissibility of BA.1 and BA.2 have not been fully defined. METHODS: We compared viral loads and clinical signs in Syrian hamsters after infection with BA.1, BA.2, or D614G variant. A competitive transmission model and next generation sequencing were used to compare the relative transmission potential of BA.1 and BA.2. RESULTS: BA.1 and BA.2 caused no apparent clinical signs while D614G caused more than 10% weight loss. Higher viral loads were detected from the nasal washes, nasal turbinate and lungs of BA.1 than BA.2 inoculated hamsters. No aerosol transmission was observed for BA.1 or BA.2 under the experimental condition that D614G transmitted efficiently. BA.1 and BA.2 were able to transmit among hamsters via direct contact; however, BA.1 transmitted more efficiently than BA.2 under the competitive transmission model. No recombination was detected from direct contacts exposed simultaneously to BA.1 and BA.2. CONCLUSIONS: Omicron BA.1 and BA.2 demonstrated attenuated pathogenicity and reduced transmission potential in hamsters when compared to early SARS-CoV-2 strains.

15.
Front Microbiol ; 13: 1049287, 2022.
Article in English | MEDLINE | ID: covidwho-2313106

ABSTRACT

Infectious bronchitis virus (IBV) has gained increasing attention in the poultry industry due to its ability to cause tissue injuries not only in the respiratory system and kidney but also in the reproductive system of layers. Recently, the GVI-1 lineage IBVs have spread widely in China, whereas their pathogenicity in egg-laying chickens has rarely been studied, especially its long-term influence in egg production upon the early infection in chicks. In this study, 10-day-old SPF chicks were infected with the GVI-1 lineage JX181 strain and monitored over a 170-day period after infection. The pathogenicity evaluation of the JX181 strain included clinical observations, immunohistochemical assay, viral load, viral shedding, gross autopsy, and laying rate. The results showed that JX181 has a high pathogenicity, causing severe system lesions, and the decrease in egg production. In summary, this study describes the long-term damages caused by the early infection with the IBV GVI-1 lineage on the reproductive system of hens, providing a comprehensive understanding of the pathogenicity of the IBV GVI-1 lineage and emphasizing the importance of its early prevention.

16.
Front Vet Sci ; 10: 1107059, 2023.
Article in English | MEDLINE | ID: covidwho-2309278

ABSTRACT

Infectious bronchitis virus (IBV) has evolved through various mutation mechanisms, including antigenic drift and recombination. Four genotypic lineages of IBVs including GI-15, GI-16, GI-19, and GVI-1 have been reported in Korea. In this study, we isolated two IBVs from chicken farms, designated IBV/Korea/289/2019 (K289/19) and IBV/Korea/163/2021 (K163/21), which are two distinct natural recombinant viruses most likely produced by genetic reassortment between the S1 gene of K40/09 strain (GI-19 lineage) and IBV/Korea/48/2020 (GI-15 lineage) in co-infected commercial chickens. Comparative sequence analysis of hypervariable regions (HVRs) revealed that the K289/19 virus had similar HVR I and II with the K40/09 virus (100% and 99.2% nucleotide sequence identity, respectively), and HVR III with the IBV/Korea/48/2020 virus (100% nucleotide sequence identity). In contrast, the K163/21 virus had HVR I and II similar to the IBV/Korea/48/2020 virus (99.1% and 99.3% nucleotide sequence identity, respectively), and HVR III to the K40/09 virus (96.6% nucleotide sequence identity). The K289/19 virus exhibited similar histopathologic lesions, tissue tropism in trachea and kidney, and antigenicity with the parental K40/09 virus. The K163/21 exhibited similar pathogenicity and tissue tropism with the K40/09 virus, which were similar results with the isolate K289/19. However, it showed a lower antigenic relatedness with both parental strains, exhibiting R-value of 25 and 42, respectively. The continued emergence of the novel reassortant IBVs suggests that multiple recombination events have occurred between different genotypes within Korea. These results suggest that antigenic profiles could be altered through natural recombination in the field, complicating the antigenic match of vaccine strains to field strains. Enhanced surveillance and research into the characteristics of newly emerging IBVs should be carried out to establish effective countermeasures.

17.
Transboundary and Emerging Diseases ; 2023, 2023.
Article in German | ProQuest Central | ID: covidwho-2305940

ABSTRACT

Porcine transmissible gastroenteritis virus is the major pathogen that causes fatal diarrhea in newborn piglets. In this study, a TGEV strain was isolated from the small intestine of diarrhea piglets in Sichuan Province, China, and designated SC2021. The complete genomic sequence of TGEV SC2021 was 28561 bp, revealing a new natural deletion TGEV strain. Based on phylogenetic analyses, TGEV SC2021 belonged to the Miller cluster and was closely related to CN strains. The newborn piglets orally challenged with TGEV SC2021 showed typical watery diarrhea. In addition, macro and micropathological changes in the lungs and intestines were observed. In conclusion, we isolated a new natural deletion virus strain and confirmed that the virus strain has high pathogenicity in newborn piglets. Moreover, macroscopic and microscopic lesions were observed in the lungs and intestines of all TGEV SC2021-infected piglets. In summary, we isolated a new natural deletion TGEV strain and demonstrated that the natural deletion strain showed high pathogenicity in newborn piglets. These data enrich the diversity of TGEV strains and help us to understand the genetic evolution and molecular pathogenesis of TGEV.

18.
Transboundary and Emerging Diseases ; 2023, 2023.
Article in German | ProQuest Central | ID: covidwho-2298636

ABSTRACT

Porcine epidemic diarrhea virus (PEDV) is a porcine enteric coronavirus globally, causing serious economic losses to the global pig industry since 2010. Here, a PEDV CH/Yinchuan/2021 strain was isolated in a CV777-vaccinated sow farm which experienced a large-scale PEDV invasion in Yinchuan, China, in 2021. Our results demonstrated that the CH/Yinchuan/2021 isolate could efficiently propagate in Vero cells, and its proliferation ability was weaker than that of CV777 at 10 passages (P10). Phylogenetic analysis of the S gene revealed that CH/Yinchuan/2021 was clustered into subgroup GIIa, forming an independent branch with 2020-2021 isolates in China. Moreover, GII was obviously allocated into four clades, showing regional and temporal differences in PEDV global isolates. Notably, CH/Yinchuan/2021 was analyzed as a recombinant originated from an American isolate and a Chinese isolate, with a big recombinant region spanning ORF1a and S1. Importantly, we found that CH/Yinchuan/2021 harbored multiple mutations relative to CV777 in neutralizing epitopes (S10, S1A, COE, and SS6). Homology modelling showed that these amino acid differences in S protein occur on the surface of its structure, especially the insertion and deletion of multiple consecutive residues at the S10 epitope. In addition, cross-neutralization analysis confirmed that the differences in the S protein of CH/Yinchuan/2021 changed its antigenicity compared with the CV777 strain, resulting in a different neutralization profile. Animal pathogenicity test showed that CH/Yinchuan/2021 caused PEDV-typified symptoms and 100% mortality in 3-day-old piglets. These data will provide valuable information to understand the epidemiology, molecular characteristics, evolution, and antigenicity of PEDV circulating in China.

19.
Transboundary and Emerging Diseases ; 2023, 2023.
Article in German | ProQuest Central | ID: covidwho-2296316

ABSTRACT

Porcine deltacoronavirus (PDCoV) is an emerging swine coronavirus that causes severe diarrhea to pigs of all ages, especially the suckling piglets under one-week-old. We previously isolated a highly pathogenic PDCoV strain, CZ2020, from a diarrheal piglet and have passaged it for over 100 passages. The adaptability of the CZ2020 increased gradually in vitro as the passage increased. Amino acid mutations were observed in pp1a, pp1ab, spike, envelop, and membrane proteins, and the spike protein accounts for 66.7% of all amino acid mutations. Then, the high passage strains, CZ2020-F80 and CZ2020-F100, were selected for evaluation of the pathogenicity in three-day-old piglets to examine whether these amino acid changes affected their virulence. At 2 days postchallenge (DPC), 2/5 piglets started to show typical diarrhea, and at 4 DPC, severe diarrhea was observed in the CZ2020-challenged piglets. Viral RNA could be detected at 1 DPC in rectal swabs and reached its highest at 4 DPC in the CZ2020-challenged group. CZ2020-F80- and CZ2020-F100-challenged groups have one piglet exhibiting mild diarrhea at 4 and 6 DPC, respectively. Compared with the CZ2020-challenged group, the piglets in CZ2020-F80- and F100-challenged groups had lower viral loads in rectal swabs, intestines, and other organs. No obvious histopathological lesions were observed in the intestines of CZ2020-F80- and F100-challenged piglets. Virulent PDCoV infection could also induce strong interferons and proinflammatory cytokines in vitro and in vivo. These data indicate that the strains, CZ2020-F80 and CZ2020-F100, were significantly attenuated via serial passaging in vitro and have the potential for developing attenuated vaccine candidates.

20.
Virol J ; 20(1): 75, 2023 04 20.
Article in English | MEDLINE | ID: covidwho-2302137

ABSTRACT

BACKGROUND: The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes non-symptomatic infection, mild influenza-like symptoms to pneumonia, severe acute respiratory distress syndrome, and even death, reflecting different clinical symptoms of viral infection. However, the mechanism of its pathogenicity remains unclear. Host-specific traits have a breakthrough significance for studying the pathogenicity of SARS-CoV-2. We previously reported SARS-CoV-2/BMA8, a mouse-adapted strain, was lethal to aged BALB/c mice but not to aged C57BL/6N mice. Here, we further investigate the differences in pathogenicity of BMA8 strain against wild-type aged C57BL/6N and BALB/c mice. METHODS: Whole blood and tissues were collected from mice before and after BMA8 strain infection. Viral replication and infectivity were assessed by detection of viral RNA copies and viral titers; the degree of inflammation in mice was tested by whole blood cell count, ELISA and RT-qPCR assays; the pathogenicity of SARS-CoV-2/BMA8 in mice was measured by Histopathology and Immunohistochemistry; and the immune level of mice was evaluated by flow cytometry to detect the number of CD8+ T cells. RESULTS: Our results suggest that SARS-CoV-2/BMA8 strain caused lower pathogenicity and inflammation level in C57BL/6N mice than in BALB/c mice. Interestingly, BALB/c mice whose MHC class I haplotype is H-2Kd showed more severe pathogenicity after infection with BMA8 strain, while blockade of H-2Kb in C57BL/6N mice was also able to cause this phenomenon. Furthermore, H-2Kb inhibition increased the expression of cytokines/chemokines and accelerated the decrease of CD8+ T cells caused by SARS-CoV-2/BMA8 infection. CONCLUSIONS: Taken together, our work shows that host MHC molecules play a crucial role in the pathogenicity differences of SARS-CoV-2/BMA8 infection. This provides a more profound insight into the pathogenesis of SARS-CoV-2, and contributes enlightenment and guidance for controlling the virus spread.


Subject(s)
COVID-19 , SARS-CoV-2 , Mice , Animals , CD8-Positive T-Lymphocytes , Virulence , COVID-19/pathology , Mice, Inbred C57BL , Mice, Inbred BALB C , Inflammation , Lung/pathology , Disease Models, Animal
SELECTION OF CITATIONS
SEARCH DETAIL